Эксплуатация информационных систем должна производиться в соответствии с существующим законодательством. Данное положение, разумеется, применимо к любому виду деятельность, однако информационные технологии специфичны в том отношении, что развиваются исключительно быстрыми темпами. Почти всегда законодательство отстает от потребностей практики, и это создает в обществе определенную напряженность. Для информационных технологий подобное отставание законов, нормативных актов, национальных и отраслевых стандартов оказывается особенно болезненным.
В настоящее время наиболее продвинутым законодательным документом в области информационной безопасности является уголовный кодекс, точнее говоря, его новая редакция, вступающая в силу в 1997 году.
В разделе IX ("Преступления против общественной безопасности"), имеется глава 28 — "Преступления в сфере компьютерной информации". Данная глава содержит три статьи - 272 ("Неправомерный доступ к компьютерной информации"), 273 ("Создание, использование и распространение вредоносных программ для ЭВМ") и 274 — "Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети". Уголовный кодекс стоит на страже всех аспектов информационной безопасности — доступности, целостности, конфиденциальности, предусматривая наказания за "уничтожение, блокирование, модификацию и копирование информации, нарушение работы ЭВМ, системы ЭВМ или их сети".
Весьма энергичную работу в области современных информационных технологий проводит Государственная техническая комиссия (Гостехкомиссия) при президенте Российской Федерации. В рамках серии Руководящих документов (РД) Гостехкомиссии подготовлен проект РД, устанавливающий классификацию межсетевых экранов (firewalls) по уровню обеспечения защищенности от несанкционированного доступа (НСД). Это принципиально важный документ, позволяющий упорядочить использование защитных средств, необходимых для реализации технологии Интранет.
Проблемы информационной безопасности волнуют не только российских законодателей и специалистов. В конце июля 1996 года в комитете по торговле сената США состоялись слушания, посвященные возможному смягчению ограничений на экспорт криптографических технологий. Рассматривался законопроект "Содействие онлайновой торговле в цифровой век" (Promotion of Commerce Online in the Digital Era, Pro-CODE S.1726). Смысл законопроекта в том, чтобы разрешить экспорт изделий, криптостойкость которых соответствует общедоступному зарубежному уровню. Это очень удачная, гибкая формулировка, которая не накладывает ограничений на длину ключей (текущее ограничение — 40 бит), но позволяет автоматически поддерживать баланс между государственными, корпоративными и частными интересами.
Месяцем раньше, на других сенатских слушаниях, директор ЦРУ John Deutch выражал беспокойство по поводу защищенности общественных компьютерных сетей. Учитывая общую озабоченность проблемами международного терроризма, можно предположить, что идея разработки специалистами ФАПСИ и NSA совместных криптографических стандартов является не такой уж безумной.
В [1] политика безопасности определяется как совокупность документированных управленческих решений, направленных на защиту информации и ассоциированных с ней ресурсов.
При разработке и проведении в жизнь политики безопасности целесообразно руководствоваться следующими принципами:
Поясним смысл перечисленных принципов.
Если у злоумышленника или недовольного пользователя появится возможность миновать защитные средства, он, разумеется, так и сделает. Применительно к межсетевым экранам данный принцип означает, что все информационные потоки в защищаемую сеть и из нее должны проходить через экран. Не должно быть "тайных" модемных входов или тестовых линий, идущих в обход экрана. Чтобы убедиться в невозможности обхода защитных средств, необходимо провести информационное обследование организации.
Надежность любой обороны определяется самым слабым звеном. Злоумышленник не будет бороться против силы, он предпочтет легкую победу над слабостью. Часто самым слабым звеном оказывается не компьютер или программа, а человек, и тогда проблема обеспечения информационной безопасности приобретает нетехнический характер. И здесь необходимо информационное обследование, причем имеются в виду не только межкомпьютерные, но и межперсональные потоки данных. Следует выяснить, где сосредоточена информация и как соответствующие объекты защищены.
Принцип невозможности перехода в небезопасное состояние означает, что при любых обстоятельствах, в том числе нештатных, защитное средство либо полностью выполняет свои функции, либо полностью блокирует доступ. Образно говоря, если в крепости механизм подъемного моста ломается, мост должен оставаться в поднятом состоянии, препятствуя проходу неприятеля.
Принцип минимизации привилегий предписывает выделять пользователям и администраторам только те права доступа, которые необходимы им для выполнения служебных обязанностей. Назначение этого принципа — уменьшить ущерб от случайных или умышленных некорректных действий пользователей и администраторов.
Принцип разделения обязанностей предполагает такое распределение ролей и ответственности, чтобы один человек не мог нарушить критически важный для организации процесс или создать брешь в защите по заказу злоумышленников. Это особенно важно, чтобы предотвратить злонамеренные или неквалифицированные действия системного администратора.
Принцип эшелонированности обороны предписывает не полагаться на один защитный рубеж, каким бы надежным он ни казался. За средствами физической защиты должны следовать программно-технические средства, за идентификацией и аутентификацией — управление доступом и, как последний рубеж, - протоколирование и аудит. Эшелонированная оборона способна по крайней мере задержать злоумышленника, а наличие такого рубежа, как протоколирование и аудит, существенно затрудняет незаметное выполнение злоумышленных действий.
Принцип разнообразия защитных средств рекомендует организовывать различные по своему характеру оборонительные рубежи, чтобы от потенциального злоумышленника требовалось овладение разнообразными и, по возможности, несовместимыми между собой навыками (например, умением преодолевать высокую ограду и знанием слабостей нескольких операционных систем).
Залогом информационной безопасности являются не сложность и скрытность, а, напротив, простота и апробированность. Эту мысль выражает принцип простоты и управляемости информационной системы в целом и защитных средств в особенности. Только для простого защитного средства можно формально или неформально доказать его корректность. Только в простой и управляемой системе можно проверить согласованность конфигурации различных компонентов и осуществить централизованное администрирование. В этой связи важно отметить интегрирующую роль Web-сервиса, скрывающего разнообразие обслуживаемых объектов и предоставляющего единый, наглядный интерфейс. Соответственно, если объекты некоторого вида (например, таблицы базы данных) доступны через Web, необходимо заблокировать прямой доступ к ним, поскольку в противном случае система будет сложной и трудно управляемой.
Последний принцип — всеобщая поддержка мер безопасности - носит нетехнический характер. Если пользователи и/или системные администраторы считают информационную безопасность чем-то излишним или даже враждебным, режим безопасности сформировать заведомо не удастся. Следует с самого начала предусмотреть комплекс мер, направленный на обеспечение лояльности персонала, на постоянное обучение, теоретическое и, главное, практическое. Технология Интранет, существенно облегчая потребление информации, способствует созданию в организации благоприятного психологического климата, что повышает шансы на осознанное следование рекомендациям в области информационной безопасности.
Анализ рисков — важнейший этап выработки политики безопасности. При оценке рисков, которым подвержены Интранет-системы, необходимо учитывать следующие обстоятельства:
Как правило, в Интранет-системах следует придерживаться принципа "все, что не разрешено, запрещено", поскольку "лишний" сетевой сервис может предоставить канал проникновения в корпоративную систему. В принципе ту же мысль выражает положение "все непонятное опасно". Целесообразно следовать методике, предложенной в [1] , раздел "Распространение подхода клиент/сервер на информационную безопасность", когда, отправляясь от функционально необходимых сервисов, строится дерево вспомогательных и экранирующих сервисов, не содержащее лишних элементов.
В общем и целом Интранет-технология не предъявляет каких-либо специфических требований к мерам процедурного уровня (см. [1] , раздел "Операционные регуляторы"). На наш взгляд, отдельного рассмотрения заслуживают лишь два обстоятельства:
Описание должностей с подробными пояснениями можно найти в работе [2] .
При поддержке жизненного цикла Интранет-информации необходимо использовать средства конфигурационного управления. Важное достоинство Интранет-технологии состоит в том, что основные операции конфигурационного управления — внесение изменений (создание новой версии) и извлечение старой версии документа — естественным образом вписываются в рамки Web-интерфейса. Те, для кого это необходимо, могут работать с деревом всех версий всех документов, подмножеством которого является дерево самых свежих версий. Существуют программные продукты, сочетающие в себе средства систем управления версиями и Web-навигаторов. Использование таких средств Web-администраторами повышает устойчивость Интранет-систем.
Мы переходим к рассмотрению мер программно-технического уровня, направленных на обеспечение информационной безопасности систем, построенных в технологии Интранет. На первое место среди таких мер мы поставим межсетевые экраны - средство разграничения доступа, служащее для защиты от внешних угроз и от угроз со стороны пользователей других сегментов корпоративных сетей.
Отметим, что бороться с угрозами, присущими сетевой среде, средствами универсальных операционных систем не представляется возможным. Универсальная ОС — это огромная программа, наверняка содержащая, помимо явных ошибок, некоторые особенности, которые могут быть использованы для получения нелегальных привилегий. Современная технология программирования не позволяет сделать столь большие программы безопасными. Кроме того, администратор, имеющий дело со сложной системой, далеко не всегда в состоянии учесть все последствия производимых изменений (как и врач, не ведающий всех побочных воздействий рекомендуемых лекарств). Наконец, в универсальной многопользовательской системе бреши в безопасности постоянно создаются самими пользователями (слабые и/или редко изменяемые пароли, неудачно установленные права доступа, оставленный без присмотра терминал и т.п.). Как указывалось выше, единственный перспективный путь связан с разработкой специализированных защитных средств, которые в силу своей простоты допускают формальную или неформальную верификацию. Межсетевой экран как раз и является таким средством, допускающим дальнейшую декомпозицию, связанную с обслуживанием различных сетевых протоколов.
Межсетевой экран — это полупроницаемая мембрана, которая располагается между защищаемой (внутренней) сетью и внешней средой (внешними сетями или другими сегментами корпоративной сети) и контролирует все информационные потоки во внутреннюю сеть и из нее ( Рис. 5 ). Контроль информационных потоков состоит в их фильтрации, то есть в выборочном пропускании через экран, возможно, с выполнением некоторых преобразований и извещением отправителя о том, что его данным в пропуске отказано. Фильтрация осуществляется на основе набора правил, предварительно загруженных в экран и являющихся выражением сетевых аспектов политики безопасности организации.
Целесообразно разделить случаи, когда экран устанавливается на границе с внешней (обычно общедоступной) сетью или на границе между сегментами одной корпоративной сети. Соответственно, мы будет говорить о внешнем и внутреннем межсетевых экранах ( Рис. 6 и Рис. 7 ).
Как правило, при общении с внешними сетями используется исключительно семейство протоколов TCP/IP. Соответственно, внешний межсетевой экран должен учитывать специфику этих протоколов. Для внутренних экранов ситуация сложнее, здесь следует принимать во внимание, помимо TCP/IP, по крайней мере протоколы SPX/IPX, используемые в сетях Novell NetWare. Иными словами, от внутренних экранов нередко требуется многопротокольность.
Ситуации, когда корпоративная сеть содержит лишь один внешний канал, являются скорее исключением, чем правилом. Напротив, типична ситуация, при которой корпоративная сеть состоит из нескольких территориально разнесенных сегментов, каждый из которых подключен к сети общего пользования ( Рис. 8 ). В этом случае каждое подключение должно защищаться своим экраном. Точнее говоря, можно считать, что корпоративный внешний межсетевой экран является составным и требуется решать задачу согласованного администрирования (управления и аудита) всех компонентов.
При рассмотрении любого вопроса, касающегося сетевых технологий, основой служит семиуровневая эталонная модель ISO/OSI. Межсетевые экраны также целесообразно классифицировать по тому, на каком уровне производится фильтрация — канальном, сетевом, транспортном или прикладном ( Рис. 9 ). Соответственно, можно говорить об экранирующих концентраторах (уровень 2), маршрутизаторах (уровень 3), о транспортном экранировании (уровень 4) и о прикладных экранах (уровень 7). Существуют также комплексные экраны, анализирующие информацию на нескольких уровнях.
При принятии решения "пропустить/не пропустить" межсетевые экраны могут использовать не только информацию, содержащуюся в фильтруемых потоках, но и данные, полученные из окружения, например, текущее время, количество активных соединений, сетевой интерфейс, через который поступил сетевой запрос, и т.д.
Возможности межсетевого экрана непосредственно определяются тем, какая информация может использоваться в правилах фильтрации и какова может быть мощность наборов правил. Вообще говоря, чем выше уровень в модели ISO/OSI, на котором функционирует экран, тем более содержательная информация ему доступна и, следовательно, тем тоньше и надежнее экран может быть сконфигурирован. В то же время, фильтрация на каждом из перечисленных выше уровней обладает своими достоинствами. Так, в концентраторах и маршрутизаторах экранирование практически ничего не стоит (достаточно задействовать имеющиеся средства фильтрации), оно эффективно и прозрачно для приложений. Средства транспортного экранирования универсальны, недороги и просты. По существу любая организация, выбирающая межсетевой экран, может найти решение в доступном для нее ценовом диапазоне и с приемлемыми характеристиками. С другой стороны, в последнее время все большее распространение получают комплексные экраны, охватывающие уровни от сетевого до прикладного, поскольку подобные продукты соединяют в себе лучшие свойства "одноуровневых" экранов разных видов.
В силу принципов эшелонированности обороны и разнообразия защитных средств, а также по некоторым другим причинам в большинстве случаев используются смешанные конфигурации, в которых объединены разнотипные экраны. Наиболее типичным является сочетание экранирующих маршрутизаторов и прикладного экрана ( Рис. 10 ).
Приведенная конфигурация называется экранирующей подсетью или демилитаризованной зоной. Как правило, сервисы, которая организация предоставляет для внешнего использования (например, "представительский" Web-сервер), целесообразно выносить как раз в демилитаризованную зону.
Помимо выразительных возможностей и допустимого количества правил, качество межсетевого экрана определяется еще двумя очень важными характеристиками — простотой использования и собственной защищенностью. В плане простоты использования первостепенное значение имеют наглядный интерфейс при задании правил фильтрации и возможность централизованного администрирования составных конфигураций. В свою очередь, в последнем аспекте хотелось бы выделить средства централизованной загрузки правил фильтрации и проверки набора правил на непротиворечивость. Важен и централизованный сбор и анализ регистрационной информации, а также получение сигналов о попытках выполнения действий, запрещенных политикой безопасности.
Собственная защищенность межсетевого экрана обеспечивается теми же средствами, что и защищенность универсальных систем. Имеется в виду физическая защита, идентификация и аутентификация, разграничение доступа, контроль целостности, протоколирование и аудит. При выполнении централизованного администрирования следует позаботиться также о защите информации от пассивного и активного прослушивания сети, то есть обеспечить ее (информации) целостность и конфиденциальность.
Хотелось бы подчеркнуть, что природа экранирования (фильтрации) как механизма безопасности очень глубока. Помимо блокирования потоков данных, нарушающих политику безопасности, межсетевой экран может скрывать информацию о защищаемой сети, тем самым затрудняя действия потенциальных злоумышленников. Так, прикладной экран может осуществлять действия от имени субъектов внутренней сети, в результате чего из внешней сети кажется, что имеет место взаимодействие исключительно с межсетевым экраном ( Рис. 11 ). При таком подходе топология внутренней сети скрыта от внешних пользователей, поэтому задача злоумышленника существенно усложняется.
Более общим методом сокрытия информации о топологии защищаемой сети является трансляция "внутренних" сетевых адресов, которая попутно решает проблему расширения адресного пространства, выделенного организации.
Ограничивающий интерфейс также можно рассматривать как разновидность экранирования. На невидимый объект трудно нападать, особенно с помощью фиксированного набора средств. В этом смысле Web-интерфейс обладает естественной защитой, особенно в том случае, когда гипертекстовые документы формируются динамически. Каждый видит лишь то, что ему положено видеть. Можно провести аналогию между динамически формируемыми гипертекстовыми документами и представлениями в реляционных базах данных, с той существенной оговоркой, что в Web-случае возможности существенно шире.
Экранирующая роль Web-сервиса наглядно проявляется и тогда, когда этот сервис осуществляет посреднические (точнее, интегрирующие) функции при доступе к другим ресурсам, например, таблицам базы данных ( Рис. 12 ). Здесь не только контролируются потоки запросов, но и скрывается реальная организация баз данных.
В заключение раздела отметим, что если организация располагает исходными текстами прикладного экрана и в состоянии эти тексты модифицировать, перед ней открываются чрезвычайно широкие возможности по настройке экрана с учетом собственных нужд. Дело в том, что в прикладных экранах фильтрация осуществляется так называемыми экранирующими агентами-программами, интерпретирующими сетевые протоколы прикладного уровня в той степени, которая необходима для обеспечения безопасности. В свою очередь, при разработке систем клиент/сервер, особенно в трехзвенной архитектуре, появляются специфические прикладные протоколы, нуждающиеся в защите не меньше стандартных. Подход, основанный на использовании экранирующих агентов, позволяет такую защиту построить, не понижая безопасность и эффективность других приложений и не усложняя структуру связей в межсетевом экране.
Идея сетей с так называемыми активными агентами, когда между компьютерами передаются не только пассивные, но и активные, исполняемые данные (то есть программы), разумеется, не нова. Первоначально цель состояла в том, чтобы уменьшить сетевой трафик, выполняя основную часть обработки там, где располагаются данные (приближение программ к данным). На практике это означало перемещение программ на серверы. Классическим примером реализации подобного подхода являются хранимые процедуры в реляционных СУБД.
Для Web-серверов аналогом хранимых процедур являются программы, обслуживающие общий шлюзовой интерфейс (Common Gateway Interface — CGI). CGI-процедуры располагаются на серверах и обычно используются для динамического порождения html-документов. Политика безопасности организации и процедурные меры должны определять, кто имеет право помещать на сервер CGI-процедуры. Жесткий контроль здесь необходим, поскольку выполнение сервером некорректной программы может привести к сколь угодно тяжелым последствиям. Разумная мера технического характера состоит в минимизации привилегий пользователя, от имени которого выполняется Web-сервер.
В технологии Интранет, если заботиться о качестве и выразительной силе пользовательского интерфейса, возникает нужда в перемещении программ с Web-серверов на клиентские компьютеры — для создания анимации, выполнения семантического контроля при вводе данных и т.д. Вообще, активные агенты - неотъемлемая часть технологии Интранет.
В каком бы направлении ни перемещались программы по сети, эти действия представляют повышенную опасность, поскольку программа, полученная из ненадежного источника, может содержать непреднамеренно внесенные ошибки или целенаправленно созданный зловредный код. Такая программа потенциально угрожает всем основным аспектам информационной безопасности:
Проблему ненадежных программ осознавали давно, но, пожалуй, только в рамках системы программирования Java (см. [3] , [4] ) впервые предложена целостная концепция ее решения.
Java предлагает три оборонительных рубежа:
Впрочем, существует еще одно, очень важное средство обеспечения информационной безопасности — беспрецедентная открытость Java-системы. Исходные тексты Java-компилятора и интерпретатора доступны для проверки, поэтому велика вероятность, что ошибки и недочеты первыми будут обнаруживать честные специалисты, а не злоумышленники.
Далее, в Разд. Java — безопасная программная среда для создания распределенных приложений , мы детально рассмотрим механизмы безопасности Java-систем. Здесь мы отметим лишь, что в концептуальном плане наибольшие трудности представляет контролируемое выполнение программ, загруженных по сети. Прежде всего, необходимо определить, какие действия считаются для таких программ допустимыми. Если исходить из того, что Java — это язык для написания клиентских частей приложений, одним из основных требований к которым является мобильность, загруженная программа может обслуживать только пользовательский интерфейс и осуществлять сетевое взаимодействие с сервером. Такая программа не может работать с файлами хотя бы потому, что на Java-терминале их, возможно, не будет. Более содержательные действия должны производиться на серверной стороне или осуществляться программами, локальными для клиентской системы. В этой связи подход, принятый в версии 2 Web-навигатора компании Netscape, нельзя назвать прокрустовым. Тем не менее, не так-то просто изменить программистские привычки, поэтому более поздние версии Netscape Navigator и другие навигаторы с теми или иными ограничениями разрешают доступ к локальным файлам и программам.
Интересный подход предлагают специалисты компании Sun Microsystems для обеспечения безопасного выполнения командных файлов. Речь идет о среде Safe-Tcl (Tool Comman Language, инструментальный командный язык). Sun предложил так называемую ячеечную модель интерпретации командный файлов. Существует главный интерпретатор, которому доступны все возможности языка. Если в процессе работы приложения необходимо выполнить сомнительный командный файл, порождается подчиненный командный интерпретатор, обладающий ограниченной функциональностью (например, из него могут быть удалены средства работы с файлами и сетевые возможности). В результате потенциально опасные программы оказываются заключенными в ячейки, защищающие пользовательские системы от враждебных действий. Для выполнения действий, которые считаются привилегированными, подчиненный интерпретатор может обращаться с запросами к главному. Здесь, очевидно, просматривается аналогия с разделением адресных пространств операционной системы и пользовательских процессов и использованием последними системных вызовов. Подобная модель уже около 30 лет является стандартной для многопользовательских ОС.
Существует еще один, довольно очевидный защитный механизм - аутентификация источника программ и контроль их целостности (см. [1] , раздел "Рекомендации X.800"). Несомненно, этот механизм нужно использовать, но проблема здесь не столько в системах программирования, таких как Java, сколько в глобальной службе директорий и инфраструктуре сертификатов в стиле X.509. Кроме того, в силу принципа эшелонированности обороны, не следует слепо доверять программам, полученным из надежных источников. Вспомним, что в ОС Unix файлы .rhosts, описывающие "надежные" компьютеры, очень часто используются для злоумышленных действий. Скорее можно представить себе политику безопасности, запрещающую выполнение программ, целостность которых нарушена, но предписывающую одинаково жестко контролировать выполнение всех прочих программ, независимо от источника.
Наряду с обеспечением безопасности программной среды (см. Разд. Безопасность программной среды ), важнейшим является вопрос о разграничении доступа к объектам Web-сервиса. Для решения этого вопроса необходимо уяснить, что является объектом, как идентифицируются субъекты, и какая модель управления доступом - принудительная или произвольная (см. [1] , раздел "Управление доступом") — применяется.
В Web-серверах объектами доступа являются универсальные локаторы ресурсов (URL — Uniform (Universal) Resource Locator). За этими локаторами могут стоять различные сущности - html-файлы, CGI-процедуры и т.п.
Как правило, субъекты доступа идентифицируются по IP-адресам и/или именам компьютеров и областей управления. Кроме того, может использоваться парольная аутентификация пользователей или более сложные схемы, основанные на криптографических технологиях (см. Разд. Аутентификация в открытых сетях , а также Разд. Secure Sockets Layer (SSL) — протокол защиты коммуникаций и поддерживающие его решения ).
В большинстве Web-серверов права разграничиваются с точностью до каталогов (директорий) с применением произвольного управления доступом. Могут предоставляться права на чтение html-файлов, выполнение CGI-процедур и т.п.
Ниже, в Разд. Разграничение доступа в рамках httpd-сервера , мы рассмотрим механизмы реализации концепции разграничения доступа.
Для раннего выявления попыток нелегального проникновения в Web-сервер важен регулярный анализ регистрационной информации. Существуют программные продукты для подобного анализа, учитывающие специфику Web-сервиса (см. ниже Разд. Средства протоколирования и аудита в рамках сетевых конфигураций ).
Разумеется, защита системы, на которой функционирует Web-сервер, должна следовать универсальным рекомендациям, главной из которых является максимальное упрощение. Все ненужные сервисы, файлы, устройства должны быть удалены. Число пользователей, имеющих прямой доступ к серверу, должно быть сведено к минимуму, а их привилегии должны быть упорядочены в соответствии со служебными обязанностями (см. выше Разд. Процедурные меры ).
Примером особенно ненужного файла, подлежащего немедленному удалению, является иллюстративная CGI-процедура phf, входящая в комплект поставки ряда реализаций Web-сервера httpd. Эта процедура позволяет выполнить на сервере произвольную команду (см. [8] ), чем уже неоднократно пользовались злоумышленники, в том числе российские.
Еще один общий принцип состоит в том, чтобы минимизировать объем информации о сервере, которую могут получить пользователи. Многие серверы в случае обращения по имени каталога и отсутствия файла index.html в нем, выдают html-вариант оглавления каталога. В этом оглавлении могут встретиться имена файлов с исходными текстами CGI-процедур или с иной конфиденциальной информацией. Такого рода "дополнительные возможности" целесообразно отключать, поскольку лишнее знание (злоумышленника) умножает печали (владельца сервера).
Методы, применяемые в открытых сетях для подтверждения и проверки подлинности субъектов, должны быть устойчивы к пассивному и активному прослушиванию сети. В работе [1] , раздел "Идентификация и аутентификация", описывается несколько подобных методов, суть которых сводится к следующему:
Методы первой группы детально описаны в статье [7] , а второй — в разделе "Идентификация и аутентификация" работы [1] .
Остановимся чуть подробнее на последнем методе. Идея состоит в том, чтобы пользователь посылал координаты спутников системы GPS (Global Positioning System), находящихся в зоне прямой видимости. Сервер аутентификации знает орбиты всех спутников, поэтому может с большой точностью (порядка метра) определить положение пользователя.
Поскольку орбиты спутников подвержены колебаниям, предсказать которые крайне сложно, подделка координат оказывается практически невозможной. Ничего не даст и перехват координат — они постоянно меняются. Непрерывная передача координат не требует от пользователя каких-либо дополнительных усилий, поэтому он может без труда многократно подтверждать свою подлинность. Аппаратура GPS сравнительно недорога и апробирована, поэтому в тех случаях, когда легальный пользователь должен находиться в определенном месте, данный метод проверки подлинности представляется весьма привлекательным и перспективным. Правда, о его широком практическом применении говорить пока рано.
В сетевых конфигурациях необходимо подтверждать подлинность не только партнеров по общению, но и источников данных (см. [1] , раздел "Рекомендации X.800"). Для аутентификации источников данных, как правило, используются методы, основанные на механизме электронной подписи и службы сертификатов (сертификаты нужны для доказательства подлинности пары (субъект, открытый ключ)). Упоминавшийся выше протокол SSL предоставляет соответствующие возможности.
У аутентификации в сетевой среде, особенно среде клиент/сервер, есть еще одна грань — желательность поддержки концепции единого входа, когда субъект входит не в отдельные системы, а в сеть в целом, доказывая свою подлинность один раз, независимо от того, каким образом он в эту сеть вошел - по протоколу telnet, ftp, с помощью утилиты rlogin и т.п. Как правило, для поддержки концепции единого входа применяются те или иные разновидности системы Kerberos [7] , поддерживающие базу данных с информацией о пользователях. Одновременно подобные системы являются средством дополнительной защиты серверов, принадлежащих сети.
Как указывалось в Разд. Постановка задачи , одной из важнейших задач является защита потоков корпоративных данных, передаваемых по открытым сетям. Открытые каналы могут быть надежно защищены лишь одним методом - криптографическим.
Отметим, что так называемые выделенные линии не обладают особыми преимуществами перед линиями общего пользования в плане информационной безопасности. Выделенные линии хотя бы частично будут располагаться в неконтролируемой зоне, где их могут повредить или осуществить к ним несанкционированное подключение. Единственным реальным достоинством является гарантированная пропускная способность выделенных линий, а вовсе не какая-то повышенная защищенность. Впрочем, современные оптоволоконные каналы способны удовлетворить потребности многих абонентов, поэтому и указанное достоинство не всегда облечено в реальную форму.
Любопытно упомянуть, что в мирное время 95% трафика Министерства обороны США передается через сети общего пользования (в частности, через Интернет). В военное время эта доля должна составлять "лишь" 70%. Можно предположить, что Пентагон — не самая бедная организация. Американские военные полагаются на сети общего пользования потому, что развивать собственную инфраструктуру в условиях быстрых технологических изменений — занятие очень дорогое и бесперспективное, оправданное даже для критически важных национальных организаций только в исключительных случаях.
Если предположить, что каждый сегмент корпоративной сети защищен межсетевым экраном, возникает следующая картина (см. Рис. 13 ).
Представляется естественным возложить на межсетевой экран задачу шифрования и дешифрования корпоративного трафика на пути во внешнюю сеть и из нее. Чтобы такое шифрование/дешифрование стало возможным, должно произойти начальное распределение ключей. Современные криптографические технологии предлагают для этого целый ряд методов. Когда ключи распределены, выработка совместных секретных ключей, обслуживающих сеанс общения абонентов, производится обычно по алгоритму Диффи-Хелмана.
После того, как межсетевые экраны осуществили криптографическое закрытие корпоративных потоков данных, территориальная разнесенность сегментов сети проявляется лишь в разной скорости обмена с разными сегментами. В остальном вся сеть выглядит как единое целое, а от абонентов не требуется привлечение каких-либо дополнительных защитных средств.
Важнейшим аспектом информационной безопасности является управляемость системы. Управляемость — это и поддержание высокой доступности системы за счет раннего выявления и ликвидации проблем, и возможность изменения аппаратной и программной конфигурации в соответствии с изменившимися условиями или потребностями, и оповещение о попытках нарушения информационной безопасности практически в реальном времени, и снижение числа ошибок администрирования, и многое, многое другое.
Наиболее остро проблема управляемости встает на клиентских рабочих местах и на стыке клиентской и серверной частей информационной системы. Причина проста — клиентских мест гораздо больше, чем серверных, они, как правило, разбросаны по значительно большей площади, их используют люди с разной квалификацией и привычками. Обслуживание и администрирование клиентских рабочих мест — занятие чрезвычайно сложное, дорогое и чреватое ошибками. Технология Интранет за счет простоты и однородности архитектуры позволяет сделать стоимость администрирования клиентского рабочего места практически нулевой. Важно и то, что замена и повторный ввод в эксплуатацию клиентского компьютера могут быть осуществлены очень быстро, поскольку это "клиенты без состояния", у них нет ничего, что требовало бы длительного восстановления или конфигурирования.
На стыке клиентской и серверной частей Интранет-системы находится Web-сервер. Это позволяет иметь единый механизм регистрации пользователей и наделения их правами доступа с последующим централизованным администрированием. Взаимодействие с многочисленными разнородными сервисами оказывается скрытым не только от пользователей, но и в значительной степени от системного администратора. Как указывалось выше, в Разд. Управление доступом путем фильтрации информации (см. Рис. 12 ), Web-сервис играет интегрирующую роль, делая архитектуру системы на более высоких уровнях простой и однородной. Поучительно сравнить структуру системы клиент/сервер, выстроенной произвольным образом, со структурой при наличии интегрирующего Web-сервиса ( Рис. 14 ).
Очевидно, что в случае (а) задача поддержания согласованности прав доступа к различным сервисам оказывается крайне сложной, а администрирование этих прав сопряжено с многочисленными ошибками и созданием слабостей. В случае (б) мы по существу имеем дело с централизованной системой, предоставляющей удаленный доступ к однородным объектам, поэтому администрирование прав доступа существенно упрощается.
![]() |
![]() |
![]() |
Информационная безопасность в Интранет: концепции и решения | Содержание | Защитные средства Интранет |
Copyright ╘ 1993-2000, Jet Infosystems |